Non-isogenous superelliptic Jacobians

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-isogenous Superelliptic Jacobians

Let p be an odd prime. Let K be a field of characteristic zero and Ka its algebraic closure. Let n ≥ 5 and m ≥ 5 be integers. Let f(x), h(x) ∈ K[x] be irreducible separable polynomials of degree n and m respectively. Suppose that the Galois group of f is either the full symmetric group Sn or the alternating group An and the Galois group of h is either the full symmetric group Sm or the alternat...

متن کامل

Endomorphisms of Superelliptic Jacobians

Let K be a field of characteristic zero, n ≥ 5 an integer, f(x) an irreducible polynomial over K of degree n, whose Galois group contains a doubly transitive simple non-abelian group. Let p be an odd prime, Z[ζp] the ring of integers in the pth cyclotomic field, Cf,p : y p = f(x) the corresponding superelliptic curve and J(Cf,p) its jacobian. Assuming that either n = p + 1 or p does not divide ...

متن کامل

Endomorphism Algebras of Superelliptic Jacobians

As usual, we write Z,Q,Fp,C for the ring of integers, the field of rational numbers, the finite field with p elements and the field of complex numbers respectively. If Z is a smooth algebraic variety over an algebraically closed field then we write Ω(Z) for the space of differentials of the first kind on Z. If Z is an abelian variety then we write End(Z) for its ring of (absolute) endomorphisms...

متن کامل

Centers of Hodge Groups of Superelliptic Jacobians

is surjective. If W is a Q-vector space, Q-algebra or Q-Lie algebra then we write WC for the correspondingC-vector space (respectively, C-algebra orC-Lie algebra) W ⊗Q C. Let f(x) ∈ C[x] be a polynomial of degree n ≥ 2 without multiple roots. Suppose that p is a prime that does not divide n and a positive integer q = p is a power of p. As usual, φ(q) = (p − 1)p denotes the Euler function. Let u...

متن کامل

Families of Explicitly Isogenous Jacobians of Variable-separated Curves

We construct six infinite series of families of pairs of curves (X, Y ) of arbitrarily high genus, defined over number fields, together with an explicit isogeny JX → JY splitting multiplication by 2, 3, or 4. The families are derived from Cassou–Noguès and Couveignes’ explicit classification of pairs (f, g) of polynomials such that f(x1)− g(x2) is reducible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2006

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-005-0921-7